Towards the Jacquet conjecture on the Local Converse Problem for $p$-adic $\mathrm {GL}_n
The Local Converse Problem is to determine how the family of the local gamma factors $\gamma(s,\pi\times\tau,\psi)$ characterizes the isomorphism class of an irreducible admissible generic representation $\pi$ of $\mathrm {GL}_n(F)$, with $F$ a non-archimedean local field, where $\tau$ runs through...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2015-04, Vol.17 (4), p.991-1007 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Local Converse Problem is to determine how the family of the local gamma factors $\gamma(s,\pi\times\tau,\psi)$ characterizes the isomorphism class of an irreducible admissible generic representation $\pi$ of $\mathrm {GL}_n(F)$, with $F$ a non-archimedean local field, where $\tau$ runs through all irreducible supercuspidal representations of $\mathrm {GL}_r(F)$ and $r$ runs through positive integers. The Jacquet conjecture asserts that it is enough to take $r=1,2,\ldots,\left[\frac{n}{2}\right]$. Based on arguments in the work of Henniart and of Chen giving preliminary steps towards the Jacquet conjecture, we formulate a general approach to prove the Jacquet conjecture. With this approach, the Jacquet conjecture is proved under an assumption which is then verified in several cases, including the case of level zero representations. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/JEMS/524 |