Quantum expanders and geometry of operator spaces
We show that there are well separated families of quantum expanders with asymptotically the maximal cardinality allowed by a known upper bound. This has applications to the ``growth" of certain operator spaces: It implies asymptotically sharp estimates for the growth of the multiplicity of $M_N...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2014-01, Vol.16 (6), p.1183-1219 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that there are well separated families of quantum expanders with asymptotically the maximal cardinality allowed by a known upper bound. This has applications to the ``growth" of certain operator spaces: It implies asymptotically sharp estimates for the growth of the multiplicity of $M_N$-spaces needed to represent (up to a constant $C>1$) the $M_N$-version of the $n$-dimensional operator Hilbert space $OH_n$ as a direct sum of copies of $M_N$. We show that, when $C$ is close to 1, this multiplicity grows as $\exp{\beta n N^2}$ for some constant $\beta>0$. The main idea is to relate quantum expanders with "smooth" points on the matricial analogue of the Euclidean unit sphere. This generalizes to operator spaces a classical geometric result on $n$-dimensional Hilbert space (corresponding to N=1). In an appendix, we give a quick proof of an inequality (related to Hastings's previous work) on random unitary matrices that is crucial for this paper. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/JEMS/458 |