The Brauer group and the Brauer–Manin set of products of varieties
Let $X$ and $Y$ be smooth and projective varieties over a field $k$ finitely generated over $\Q$, and let $\ov X$ and $\ov Y$ be the varieties over an algebraic closure of $k$ obtained from $X$ and $Y$, respectively, by extension of the ground field. We show that the Galois invariant subgroup of $\B...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2014-01, Vol.16 (4), p.749-769 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $X$ and $Y$ be smooth and projective varieties over a field $k$ finitely generated over $\Q$, and let $\ov X$ and $\ov Y$ be the varieties over an algebraic closure of $k$ obtained from $X$ and $Y$, respectively, by extension of the ground field. We show that the Galois invariant subgroup of $\Br(\ov X)\oplus \Br(\ov Y)$ has finite index in the Galois invariant subgroup of $\Br(\ov X\times\ov Y)$. This implies that the cokernel of the natural map $\Br (X)\oplus\Br (Y)\to\Br(X\times Y)$ is finite when $k$ is a number field. In this case we prove that the Brauer–Manin set of the product of varieties is the product of their Brauer–Manin sets. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/JEMS/445 |