The Brauer group and the Brauer–Manin set of products of varieties

Let $X$ and $Y$ be smooth and projective varieties over a field $k$ finitely generated over $\Q$, and let $\ov X$ and $\ov Y$ be the varieties over an algebraic closure of $k$ obtained from $X$ and $Y$, respectively, by extension of the ground field. We show that the Galois invariant subgroup of $\B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2014-01, Vol.16 (4), p.749-769
Hauptverfasser: Skorobogatov, Alexei, Zarhin, Yuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $X$ and $Y$ be smooth and projective varieties over a field $k$ finitely generated over $\Q$, and let $\ov X$ and $\ov Y$ be the varieties over an algebraic closure of $k$ obtained from $X$ and $Y$, respectively, by extension of the ground field. We show that the Galois invariant subgroup of $\Br(\ov X)\oplus \Br(\ov Y)$ has finite index in the Galois invariant subgroup of $\Br(\ov X\times\ov Y)$. This implies that the cokernel of the natural map $\Br (X)\oplus\Br (Y)\to\Br(X\times Y)$ is finite when $k$ is a number field. In this case we prove that the Brauer–Manin set of the product of varieties is the product of their Brauer–Manin sets.
ISSN:1435-9855
1435-9863
DOI:10.4171/JEMS/445