Quiver varieties and the character ring of general linear groups over finite fields

Given a tuple $(\calX_1,\dots,\calX_k)$ of irreducible characters of $\GL_n(\F_q)$ we define a star-shaped quiver $\Gamma$ together with a dimension vector $\v$. Assume that $(\calX_1,\dots,\calX_k)$ is \emph{generic}. Our first result is a formula which expresses the multiplicity of the trivial cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2013-01, Vol.15 (4), p.1375-1455
1. Verfasser: Letellier, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a tuple $(\calX_1,\dots,\calX_k)$ of irreducible characters of $\GL_n(\F_q)$ we define a star-shaped quiver $\Gamma$ together with a dimension vector $\v$. Assume that $(\calX_1,\dots,\calX_k)$ is \emph{generic}. Our first result is a formula which expresses the multiplicity of the trivial character in the tensor product $\calX_1\otimes\cdots\otimes\calX_k$ as the trace of the action of some Weyl group on the intersection cohomology of some (non-affine) quiver varieties associated to $(\Gamma,\v)$. The existence of such a quiver variety is subject to some condition. Assuming that this condition is satisfied, we prove our second result: The multiplicity $\langle \calX_1\otimes\cdots\otimes\calX_k,1\rangle$ is non-zero if and only if $\v$ is a root of the Kac-Moody algebra associated with $\Gamma$. This is somehow similar to the connection between Horn's problem and the representation theory of $\GL_n(\C)$}.
ISSN:1435-9855
1435-9863
DOI:10.4171/JEMS/395