Variations of mixed Hodge structure attached to the deformation theory of a complex variation of Hodge structures

Let $X$ be a compact Kähler manifold, $x\in X$ be a base point and $\rho: \pi_1(X,x) \to GL_N(\mathbb C)$ be the monodromy representation of a $\mathbb C$-VHS. Building on Goldman–Millson’s classical work, we construct a mixed Hodge structure on the complete local ring of the representation variety...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2011-01, Vol.13 (6), p.1769-1798
Hauptverfasser: Eyssidieux, Philippe, Simpson, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $X$ be a compact Kähler manifold, $x\in X$ be a base point and $\rho: \pi_1(X,x) \to GL_N(\mathbb C)$ be the monodromy representation of a $\mathbb C$-VHS. Building on Goldman–Millson’s classical work, we construct a mixed Hodge structure on the complete local ring of the representation variety at $\rho$ and a variation of mixed Hodge structures whose monodromy is the universal deformation of $\rho$ .
ISSN:1435-9855
1435-9863
DOI:10.4171/JEMS/293