Variations of mixed Hodge structure attached to the deformation theory of a complex variation of Hodge structures
Let $X$ be a compact Kähler manifold, $x\in X$ be a base point and $\rho: \pi_1(X,x) \to GL_N(\mathbb C)$ be the monodromy representation of a $\mathbb C$-VHS. Building on Goldman–Millson’s classical work, we construct a mixed Hodge structure on the complete local ring of the representation variety...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2011-01, Vol.13 (6), p.1769-1798 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $X$ be a compact Kähler manifold, $x\in X$ be a base point and $\rho: \pi_1(X,x) \to GL_N(\mathbb C)$ be the monodromy representation of a $\mathbb C$-VHS. Building on Goldman–Millson’s classical work, we construct a mixed Hodge structure on the complete local ring of the representation variety at $\rho$ and a variation of mixed Hodge structures whose monodromy is the universal deformation of $\rho$ . |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/JEMS/293 |