Birational involutions of the real projective plane

We classify birational involutions of the real projective plane up to conjugation. In contrast with an analogous classification over the complex numbers (due to E. Bertini, G. Castelnuovo, F. Enriques, L. Bayle and A. Beauville), which includes four different classes of involutions, we discover 12 d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2024-09
Hauptverfasser: Cheltsov, Ivan, Mangolte, Frédéric, Yasinsky, Egor, Zimmermann, Susanna
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We classify birational involutions of the real projective plane up to conjugation. In contrast with an analogous classification over the complex numbers (due to E. Bertini, G. Castelnuovo, F. Enriques, L. Bayle and A. Beauville), which includes four different classes of involutions, we discover 12 different classes over the reals, and provide many examples when the fixed curve of an involution does not determine its conjugacy class in the real plane Cremona group.
ISSN:1435-9855
1435-9863
DOI:10.4171/jems/1537