Convergence of a two-grid algorithm for the control of the wave equation

We analyze the problem of boundary observability of the finite-difference space semi-discretizations of the 2-d wave equation in the square. We prove the uniform (with respect to the mesh-size) boundary observability for the solutions obtained by the two-grid preconditioner introduced by Glowinski \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2009-01, Vol.11 (2), p.351-391
Hauptverfasser: Ignat, Liviu, Zuazua, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 2
container_start_page 351
container_title Journal of the European Mathematical Society : JEMS
container_volume 11
creator Ignat, Liviu
Zuazua, Enrique
description We analyze the problem of boundary observability of the finite-difference space semi-discretizations of the 2-d wave equation in the square. We prove the uniform (with respect to the mesh-size) boundary observability for the solutions obtained by the two-grid preconditioner introduced by Glowinski \cite{0763.76042}. Our method uses previously known uniform observability inequalities for low frequency solutions and a dyadic spectral time decomposition. As a consequence we prove the convergence of the two-grid algorithm for computing the boundary controls for the wave equation. The method can be applied in any space dimension, for more general domains and other discretization schemes.
doi_str_mv 10.4171/JEMS/153
format Article
fullrecord <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_JEMS_153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-42f04f3b906142e341eeb837b62593e0ae0ac19e91352e616be0fd3a1017d85d3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKfgT8iFF97U5TRJPy6lzE2ZeKFel7Q96VraRpNsw39v62Rw4HzwcHh5CLkF9iAghsXL8vV9AZKfkRkILoM0ifj5aZbyklw51zIGsRR8RtaZGfZoaxxKpEZTRf3BBLVtKqq62tjGb3uqjaV-i7Q0g7emm7hpPag9UvzeKd-Y4ZpcaNU5vPnvc_L5tPzI1sHmbfWcPW6CMkyZD0SomdC8SFkEIkQuALFIeFxEoUw5MjVWCSmmwGWIEUQFMl1xBWPgKpEVn5P749_SGucs6vzLNr2yPzmwfDKQt9i7fDQwondHdDq0ZmeHMdgJm0T9Yb8z5FmK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convergence of a two-grid algorithm for the control of the wave equation</title><source>European Mathematical Society Publishing House</source><creator>Ignat, Liviu ; Zuazua, Enrique</creator><creatorcontrib>Ignat, Liviu ; Zuazua, Enrique</creatorcontrib><description>We analyze the problem of boundary observability of the finite-difference space semi-discretizations of the 2-d wave equation in the square. We prove the uniform (with respect to the mesh-size) boundary observability for the solutions obtained by the two-grid preconditioner introduced by Glowinski \cite{0763.76042}. Our method uses previously known uniform observability inequalities for low frequency solutions and a dyadic spectral time decomposition. As a consequence we prove the convergence of the two-grid algorithm for computing the boundary controls for the wave equation. The method can be applied in any space dimension, for more general domains and other discretization schemes.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/JEMS/153</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>control ; Numerical analysis ; Partial differential equations ; Systems theory</subject><ispartof>Journal of the European Mathematical Society : JEMS, 2009-01, Vol.11 (2), p.351-391</ispartof><rights>European Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-42f04f3b906142e341eeb837b62593e0ae0ac19e91352e616be0fd3a1017d85d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,24053,27924,27925</link.rule.ids></links><search><creatorcontrib>Ignat, Liviu</creatorcontrib><creatorcontrib>Zuazua, Enrique</creatorcontrib><title>Convergence of a two-grid algorithm for the control of the wave equation</title><title>Journal of the European Mathematical Society : JEMS</title><addtitle>J. Eur. Math. Soc</addtitle><description>We analyze the problem of boundary observability of the finite-difference space semi-discretizations of the 2-d wave equation in the square. We prove the uniform (with respect to the mesh-size) boundary observability for the solutions obtained by the two-grid preconditioner introduced by Glowinski \cite{0763.76042}. Our method uses previously known uniform observability inequalities for low frequency solutions and a dyadic spectral time decomposition. As a consequence we prove the convergence of the two-grid algorithm for computing the boundary controls for the wave equation. The method can be applied in any space dimension, for more general domains and other discretization schemes.</description><subject>control</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Systems theory</subject><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKfgT8iFF97U5TRJPy6lzE2ZeKFel7Q96VraRpNsw39v62Rw4HzwcHh5CLkF9iAghsXL8vV9AZKfkRkILoM0ifj5aZbyklw51zIGsRR8RtaZGfZoaxxKpEZTRf3BBLVtKqq62tjGb3uqjaV-i7Q0g7emm7hpPag9UvzeKd-Y4ZpcaNU5vPnvc_L5tPzI1sHmbfWcPW6CMkyZD0SomdC8SFkEIkQuALFIeFxEoUw5MjVWCSmmwGWIEUQFMl1xBWPgKpEVn5P749_SGucs6vzLNr2yPzmwfDKQt9i7fDQwondHdDq0ZmeHMdgJm0T9Yb8z5FmK</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Ignat, Liviu</creator><creator>Zuazua, Enrique</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090101</creationdate><title>Convergence of a two-grid algorithm for the control of the wave equation</title><author>Ignat, Liviu ; Zuazua, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-42f04f3b906142e341eeb837b62593e0ae0ac19e91352e616be0fd3a1017d85d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>control</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Systems theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ignat, Liviu</creatorcontrib><creatorcontrib>Zuazua, Enrique</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignat, Liviu</au><au>Zuazua, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of a two-grid algorithm for the control of the wave equation</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><addtitle>J. Eur. Math. Soc</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>11</volume><issue>2</issue><spage>351</spage><epage>391</epage><pages>351-391</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>We analyze the problem of boundary observability of the finite-difference space semi-discretizations of the 2-d wave equation in the square. We prove the uniform (with respect to the mesh-size) boundary observability for the solutions obtained by the two-grid preconditioner introduced by Glowinski \cite{0763.76042}. Our method uses previously known uniform observability inequalities for low frequency solutions and a dyadic spectral time decomposition. As a consequence we prove the convergence of the two-grid algorithm for computing the boundary controls for the wave equation. The method can be applied in any space dimension, for more general domains and other discretization schemes.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/JEMS/153</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-9855
ispartof Journal of the European Mathematical Society : JEMS, 2009-01, Vol.11 (2), p.351-391
issn 1435-9855
1435-9863
language eng
recordid cdi_crossref_primary_10_4171_jems_153
source European Mathematical Society Publishing House
subjects control
Numerical analysis
Partial differential equations
Systems theory
title Convergence of a two-grid algorithm for the control of the wave equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20a%20two-grid%20algorithm%20for%20the%20control%20of%20the%20wave%20equation&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Ignat,%20Liviu&rft.date=2009-01-01&rft.volume=11&rft.issue=2&rft.spage=351&rft.epage=391&rft.pages=351-391&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/JEMS/153&rft_dat=%3Cems_cross%3E10_4171_JEMS_153%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true