Convergence of a two-grid algorithm for the control of the wave equation

We analyze the problem of boundary observability of the finite-difference space semi-discretizations of the 2-d wave equation in the square. We prove the uniform (with respect to the mesh-size) boundary observability for the solutions obtained by the two-grid preconditioner introduced by Glowinski \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2009-01, Vol.11 (2), p.351-391
Hauptverfasser: Ignat, Liviu, Zuazua, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze the problem of boundary observability of the finite-difference space semi-discretizations of the 2-d wave equation in the square. We prove the uniform (with respect to the mesh-size) boundary observability for the solutions obtained by the two-grid preconditioner introduced by Glowinski \cite{0763.76042}. Our method uses previously known uniform observability inequalities for low frequency solutions and a dyadic spectral time decomposition. As a consequence we prove the convergence of the two-grid algorithm for computing the boundary controls for the wave equation. The method can be applied in any space dimension, for more general domains and other discretization schemes.
ISSN:1435-9855
1435-9863
DOI:10.4171/JEMS/153