Non-classical solutions of the $p$-Laplace equation
In this paper we settle Iwaniec and Sbordone’s 1994 conjecture concerning very weak solutions to the p -Laplace equation. Namely, on the one hand we show that distributional solutions of the p -Laplace equation in W^{1,r} for p \neq 2 and r>\max\,\{ 1,p-1\} are classical weak solutions if their w...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2024-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we settle Iwaniec and Sbordone’s 1994 conjecture concerning very weak solutions to the
p
-Laplace equation. Namely, on the one hand we show that distributional solutions of the
p
-Laplace equation in
W^{1,r}
for
p \neq 2
and
r>\max\,\{ 1,p-1\}
are classical weak solutions if their weak derivatives belong to certain cones. On the other hand, we construct via convex integration non-energetic distributional solutions if this cone condition is not met, thus disproving Iwaniec and Sbordone’s conjecture in general. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/jems/1462 |