An inverse problem for Hankel operators and turbulent solutions of the cubic Szegő equation on the line

We construct inverse spectral theory for finite rank Hankel operators acting on the Hardy space of the upper half-plane. A particular feature of our theory is that we completely characterise the set of spectral data. As an application of this theory, we prove the genericity of turbulent solutions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2024-04
Hauptverfasser: Gérard, Patrick, Pushnitski, Alexander
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of the European Mathematical Society : JEMS
container_volume
creator Gérard, Patrick
Pushnitski, Alexander
description We construct inverse spectral theory for finite rank Hankel operators acting on the Hardy space of the upper half-plane. A particular feature of our theory is that we completely characterise the set of spectral data. As an application of this theory, we prove the genericity of turbulent solutions of the cubic Szegő equation on the real line.
doi_str_mv 10.4171/jems/1457
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_1457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jems_1457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c697-66c260284b8f2d3736155d8c7c0d658fdd571e4a7ca34c7f64a4aae013e30e9f3</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsFYXvsHduoidyfyly1LUCgUXdh8mkzs2NZmJM4mgb-FD-V41KMKBc-CDs_gIuWb0VjDNFgfs0oIJqU_IjAkus2Wh-On_lvKcXKR0oJRpKfiM7FceGv-OMSH0MVQtduBChI3xr9hC6DGaIcQExtcwjLEaW_QDpNCOQxN8guBg2CPYsWosPH_iy_cX4NtoJgo_mWDbeLwkZ860Ca_-ek5293e79SbbPj08rlfbzKqlzpSyuaJ5IarC5TXXXDEp68JqS2slC1fXUjMURlvDhdVOCSOMQco4copLx-fk5vfWxpBSRFf2selM_CgZLSdD5WSonAzxIzwkW9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An inverse problem for Hankel operators and turbulent solutions of the cubic Szegő equation on the line</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gérard, Patrick ; Pushnitski, Alexander</creator><creatorcontrib>Gérard, Patrick ; Pushnitski, Alexander</creatorcontrib><description>We construct inverse spectral theory for finite rank Hankel operators acting on the Hardy space of the upper half-plane. A particular feature of our theory is that we completely characterise the set of spectral data. As an application of this theory, we prove the genericity of turbulent solutions of the cubic Szegő equation on the real line.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/jems/1457</identifier><language>eng</language><ispartof>Journal of the European Mathematical Society : JEMS, 2024-04</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8237-0560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Gérard, Patrick</creatorcontrib><creatorcontrib>Pushnitski, Alexander</creatorcontrib><title>An inverse problem for Hankel operators and turbulent solutions of the cubic Szegő equation on the line</title><title>Journal of the European Mathematical Society : JEMS</title><description>We construct inverse spectral theory for finite rank Hankel operators acting on the Hardy space of the upper half-plane. A particular feature of our theory is that we completely characterise the set of spectral data. As an application of this theory, we prove the genericity of turbulent solutions of the cubic Szegő equation on the real line.</description><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhQdRsFYXvsHduoidyfyly1LUCgUXdh8mkzs2NZmJM4mgb-FD-V41KMKBc-CDs_gIuWb0VjDNFgfs0oIJqU_IjAkus2Wh-On_lvKcXKR0oJRpKfiM7FceGv-OMSH0MVQtduBChI3xr9hC6DGaIcQExtcwjLEaW_QDpNCOQxN8guBg2CPYsWosPH_iy_cX4NtoJgo_mWDbeLwkZ860Ca_-ek5293e79SbbPj08rlfbzKqlzpSyuaJ5IarC5TXXXDEp68JqS2slC1fXUjMURlvDhdVOCSOMQco4copLx-fk5vfWxpBSRFf2selM_CgZLSdD5WSonAzxIzwkW9A</recordid><startdate>20240430</startdate><enddate>20240430</enddate><creator>Gérard, Patrick</creator><creator>Pushnitski, Alexander</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8237-0560</orcidid></search><sort><creationdate>20240430</creationdate><title>An inverse problem for Hankel operators and turbulent solutions of the cubic Szegő equation on the line</title><author>Gérard, Patrick ; Pushnitski, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c697-66c260284b8f2d3736155d8c7c0d658fdd571e4a7ca34c7f64a4aae013e30e9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gérard, Patrick</creatorcontrib><creatorcontrib>Pushnitski, Alexander</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gérard, Patrick</au><au>Pushnitski, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An inverse problem for Hankel operators and turbulent solutions of the cubic Szegő equation on the line</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><date>2024-04-30</date><risdate>2024</risdate><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>We construct inverse spectral theory for finite rank Hankel operators acting on the Hardy space of the upper half-plane. A particular feature of our theory is that we completely characterise the set of spectral data. As an application of this theory, we prove the genericity of turbulent solutions of the cubic Szegő equation on the real line.</abstract><doi>10.4171/jems/1457</doi><orcidid>https://orcid.org/0000-0002-8237-0560</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-9855
ispartof Journal of the European Mathematical Society : JEMS, 2024-04
issn 1435-9855
1435-9863
language eng
recordid cdi_crossref_primary_10_4171_jems_1457
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title An inverse problem for Hankel operators and turbulent solutions of the cubic Szegő equation on the line
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20inverse%20problem%20for%20Hankel%20operators%20and%20turbulent%20solutions%20of%20the%20cubic%20Szeg%C5%91%20equation%20on%20the%20line&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=G%C3%A9rard,%20Patrick&rft.date=2024-04-30&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/jems/1457&rft_dat=%3Ccrossref%3E10_4171_jems_1457%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true