An inverse problem for Hankel operators and turbulent solutions of the cubic Szegő equation on the line
We construct inverse spectral theory for finite rank Hankel operators acting on the Hardy space of the upper half-plane. A particular feature of our theory is that we completely characterise the set of spectral data. As an application of this theory, we prove the genericity of turbulent solutions of...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2024-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct inverse spectral theory for finite rank Hankel operators acting on the Hardy space of the upper half-plane. A particular feature of our theory is that we completely characterise the set of spectral data. As an application of this theory, we prove the genericity of turbulent solutions of the cubic Szegő equation on the real line. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/jems/1457 |