Non-triviality of the phase transition for percolation on finite transitive graphs

We prove that if (G_{n})_{n \geq1}=((V_{n},E_{n}))_{n\geq 1} is a sequence of finite, vertex-transitive graphs with bounded degrees and |V_{n}|\to\infty that is at least (1+\varepsilon) -dimensional for some \varepsilon>0 in the sense that \operatorname{diam} (G_{n})=O(|V_{n}|^{1/(1+\varepsilon)}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2024-05
Hauptverfasser: Hutchcroft, Tom, Tointon, Matthew
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that if (G_{n})_{n \geq1}=((V_{n},E_{n}))_{n\geq 1} is a sequence of finite, vertex-transitive graphs with bounded degrees and |V_{n}|\to\infty that is at least (1+\varepsilon) -dimensional for some \varepsilon>0 in the sense that \operatorname{diam} (G_{n})=O(|V_{n}|^{1/(1+\varepsilon)}) \quad \text{as }n\to\infty then this sequence of graphs has a non-trivial phase transition for Bernoulli bond percolation. More precisely, we prove under these conditions that for each 0
ISSN:1435-9855
1435-9863
DOI:10.4171/jems/1453