Non-triviality of the phase transition for percolation on finite transitive graphs
We prove that if (G_{n})_{n \geq1}=((V_{n},E_{n}))_{n\geq 1} is a sequence of finite, vertex-transitive graphs with bounded degrees and |V_{n}|\to\infty that is at least (1+\varepsilon) -dimensional for some \varepsilon>0 in the sense that \operatorname{diam} (G_{n})=O(|V_{n}|^{1/(1+\varepsilon)}...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2024-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that if
(G_{n})_{n \geq1}=((V_{n},E_{n}))_{n\geq 1}
is a sequence of finite, vertex-transitive graphs with bounded degrees and
|V_{n}|\to\infty
that is at least
(1+\varepsilon)
-dimensional for some
\varepsilon>0
in the sense that
\operatorname{diam} (G_{n})=O(|V_{n}|^{1/(1+\varepsilon)}) \quad \text{as }n\to\infty
then this sequence of graphs has a non-trivial phase transition for Bernoulli bond percolation. More precisely, we prove under these conditions that for each
0 |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/jems/1453 |