On the realization space of the cube

We prove that the realization space of the d -dimensional cube is contractible. For this we first show that any two realizations are connected by a finite sequence of projective transformations and normal transformations. As an application we use this fact to define an analog of the connected sum co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2024-01, Vol.26 (1), p.261-273
Hauptverfasser: Adiprasito, Karim, Kalmanovich, Daniel, Nevo, Eran
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the realization space of the d -dimensional cube is contractible. For this we first show that any two realizations are connected by a finite sequence of projective transformations and normal transformations. As an application we use this fact to define an analog of the connected sum construction for cubical d -polytopes, and apply this construction to certain cubical d -polytopes to conclude that the rays spanned by f -vectors of cubical d -polytopes are dense in Adin’s cone. The connectivity result on cubes extends to any product of simplices, and further it shows that the respective realization spaces are contractible.
ISSN:1435-9855
1435-9863
DOI:10.4171/jems/1361