The étale-open topology and the stable fields conjecture
For an arbitrary field K and a K -variety V , we introduce the étale-open topology on the set V(K) of K -points of V . This topology agrees with the Zariski topology, Euclidean topology, or valuation topology when K is separably closed, real closed, or p -adically closed, respectively. Topological p...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2024-01, Vol.26 (10), p.4033-4070 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an arbitrary field
K
and a
K
-variety
V
, we introduce the étale-open topology on the set
V(K)
of
K
-points of
V
. This topology agrees with the Zariski topology, Euclidean topology, or valuation topology when
K
is separably closed, real closed, or
p
-adically closed, respectively. Topological properties of the étale-open topology correspond to algebraic properties of
K
. For example, the étale-open topology on
\mathbb{A}^1(K)
is not discrete if and only if
K
is large. As an application, we show that a large stable field is separably closed. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/jems/1345 |