mathbb{C}$-motivic modular forms
We construct a topological model for cellular, 2-complete, stable \mathbb{C} -motivic homotopy theory that uses no algebro-geometric foundations. We compute the Steenrod algebra in this context, and we construct a “motivic modular forms” spectrum over \mathbb{C} .
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2021-11, Vol.24 (10), p.3597-3628 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct a topological model for cellular, 2-complete, stable
\mathbb{C}
-motivic homotopy theory that uses no algebro-geometric foundations. We compute the Steenrod algebra in this context, and we construct a “motivic modular forms” spectrum over
\mathbb{C}
. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/jems/1171 |