Class groups and local indecomposability for non-CM forms
In the late 1990s, R. Coleman and R. Greenberg (independently) asked for a global property characterizing those p -ordinary cuspidal eigenforms whose associated Galois representation becomes decomposable upon restriction to a decomposition group at p . It is expected that such p -ordinary eigenforms...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2021-06, Vol.24 (4), p.1103-1160 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1160 |
---|---|
container_issue | 4 |
container_start_page | 1103 |
container_title | Journal of the European Mathematical Society : JEMS |
container_volume | 24 |
creator | Castella, Francesc Wang-Erickson, Carl Hida, Haruzo |
description | In the late 1990s, R. Coleman and R. Greenberg (independently) asked for a global property characterizing those p -ordinary cuspidal eigenforms whose associated Galois representation becomes decomposable upon restriction to a decomposition group at p . It is expected that such p -ordinary eigenforms are precisely those with complex multiplication.
In this paper, we study Coleman–Greenberg’s question using Galois deformation theory. In particular, for p -ordinary eigenforms which are congruent to one with complex multiplication, we prove that the conjectured answer follows from the p -indivisibility of a certain class group. |
doi_str_mv | 10.4171/jems/1107 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_1107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jems_1107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-bd03592ace22f5df97ed477ef8f779e9492e12cee96469c3a92bdbc15ab5e2073</originalsourceid><addsrcrecordid>eNo9z71OwzAUhmELgUQpDNyBVwZT_8b1iCL-pCKWdo4c-xilcuLIpwy9exSBmL53-qSHkHvBH7WwYnOEETdCcHtBVkIrw9y2UZf_bcw1uUE8ci6s0WpFXJs9Iv2q5XtG6qdIcwk-02GKEMo4F_T9kIfTmaZS6VQm1n4sOeItuUo-I9z97ZocXp737Rvbfb6-t087FpTiJ9ZHroyTPoCUycTkLERtLaRtstaB006CkAHANbpxQXkn-9gHYXxvQHKr1uTh9zfUglghdXMdRl_PneDdYu4Wc7eY1Q-n5EqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Class groups and local indecomposability for non-CM forms</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Castella, Francesc ; Wang-Erickson, Carl ; Hida, Haruzo</creator><creatorcontrib>Castella, Francesc ; Wang-Erickson, Carl ; Hida, Haruzo</creatorcontrib><description>In the late 1990s, R. Coleman and R. Greenberg (independently) asked for a global property characterizing those p -ordinary cuspidal eigenforms whose associated Galois representation becomes decomposable upon restriction to a decomposition group at p . It is expected that such p -ordinary eigenforms are precisely those with complex multiplication.
In this paper, we study Coleman–Greenberg’s question using Galois deformation theory. In particular, for p -ordinary eigenforms which are congruent to one with complex multiplication, we prove that the conjectured answer follows from the p -indivisibility of a certain class group.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/jems/1107</identifier><language>eng</language><ispartof>Journal of the European Mathematical Society : JEMS, 2021-06, Vol.24 (4), p.1103-1160</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-bd03592ace22f5df97ed477ef8f779e9492e12cee96469c3a92bdbc15ab5e2073</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Castella, Francesc</creatorcontrib><creatorcontrib>Wang-Erickson, Carl</creatorcontrib><creatorcontrib>Hida, Haruzo</creatorcontrib><title>Class groups and local indecomposability for non-CM forms</title><title>Journal of the European Mathematical Society : JEMS</title><description>In the late 1990s, R. Coleman and R. Greenberg (independently) asked for a global property characterizing those p -ordinary cuspidal eigenforms whose associated Galois representation becomes decomposable upon restriction to a decomposition group at p . It is expected that such p -ordinary eigenforms are precisely those with complex multiplication.
In this paper, we study Coleman–Greenberg’s question using Galois deformation theory. In particular, for p -ordinary eigenforms which are congruent to one with complex multiplication, we prove that the conjectured answer follows from the p -indivisibility of a certain class group.</description><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9z71OwzAUhmELgUQpDNyBVwZT_8b1iCL-pCKWdo4c-xilcuLIpwy9exSBmL53-qSHkHvBH7WwYnOEETdCcHtBVkIrw9y2UZf_bcw1uUE8ci6s0WpFXJs9Iv2q5XtG6qdIcwk-02GKEMo4F_T9kIfTmaZS6VQm1n4sOeItuUo-I9z97ZocXp737Rvbfb6-t087FpTiJ9ZHroyTPoCUycTkLERtLaRtstaB006CkAHANbpxQXkn-9gHYXxvQHKr1uTh9zfUglghdXMdRl_PneDdYu4Wc7eY1Q-n5EqY</recordid><startdate>20210608</startdate><enddate>20210608</enddate><creator>Castella, Francesc</creator><creator>Wang-Erickson, Carl</creator><creator>Hida, Haruzo</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210608</creationdate><title>Class groups and local indecomposability for non-CM forms</title><author>Castella, Francesc ; Wang-Erickson, Carl ; Hida, Haruzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-bd03592ace22f5df97ed477ef8f779e9492e12cee96469c3a92bdbc15ab5e2073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castella, Francesc</creatorcontrib><creatorcontrib>Wang-Erickson, Carl</creatorcontrib><creatorcontrib>Hida, Haruzo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castella, Francesc</au><au>Wang-Erickson, Carl</au><au>Hida, Haruzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Class groups and local indecomposability for non-CM forms</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><date>2021-06-08</date><risdate>2021</risdate><volume>24</volume><issue>4</issue><spage>1103</spage><epage>1160</epage><pages>1103-1160</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>In the late 1990s, R. Coleman and R. Greenberg (independently) asked for a global property characterizing those p -ordinary cuspidal eigenforms whose associated Galois representation becomes decomposable upon restriction to a decomposition group at p . It is expected that such p -ordinary eigenforms are precisely those with complex multiplication.
In this paper, we study Coleman–Greenberg’s question using Galois deformation theory. In particular, for p -ordinary eigenforms which are congruent to one with complex multiplication, we prove that the conjectured answer follows from the p -indivisibility of a certain class group.</abstract><doi>10.4171/jems/1107</doi><tpages>58</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-9855 |
ispartof | Journal of the European Mathematical Society : JEMS, 2021-06, Vol.24 (4), p.1103-1160 |
issn | 1435-9855 1435-9863 |
language | eng |
recordid | cdi_crossref_primary_10_4171_jems_1107 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | Class groups and local indecomposability for non-CM forms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Class%20groups%20and%20local%20indecomposability%20for%20non-CM%20forms&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Castella,%20Francesc&rft.date=2021-06-08&rft.volume=24&rft.issue=4&rft.spage=1103&rft.epage=1160&rft.pages=1103-1160&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/jems/1107&rft_dat=%3Ccrossref%3E10_4171_jems_1107%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |