Class groups and local indecomposability for non-CM forms

In the late 1990s, R. Coleman and R. Greenberg (independently) asked for a global property characterizing those p -ordinary cuspidal eigenforms whose associated Galois representation becomes decomposable upon restriction to a decomposition group at p . It is expected that such p -ordinary eigenforms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2021-06, Vol.24 (4), p.1103-1160
Hauptverfasser: Castella, Francesc, Wang-Erickson, Carl, Hida, Haruzo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the late 1990s, R. Coleman and R. Greenberg (independently) asked for a global property characterizing those p -ordinary cuspidal eigenforms whose associated Galois representation becomes decomposable upon restriction to a decomposition group at p . It is expected that such p -ordinary eigenforms are precisely those with complex multiplication. In this paper, we study Coleman–Greenberg’s question using Galois deformation theory. In particular, for p -ordinary eigenforms which are congruent to one with complex multiplication, we prove that the conjectured answer follows from the p -indivisibility of a certain class group.
ISSN:1435-9855
1435-9863
DOI:10.4171/jems/1107