On Ilmanen’s multiplicity-one conjecture for mean curvature flow with type-$I$ mean curvature

In this paper, we show that if the mean curvature of a closed smooth embedded mean curvature flow in {\mathbb R}^3 is of type- I , then the rescaled flow at the first finite singular time converges smoothly to a self-shrinker flow with multiplicity one. This result confirms Ilmanen's multiplici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2022-01, Vol.24 (1), p.37-135
Hauptverfasser: Li, Haozhao, Wang, Bing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we show that if the mean curvature of a closed smooth embedded mean curvature flow in {\mathbb R}^3 is of type- I , then the rescaled flow at the first finite singular time converges smoothly to a self-shrinker flow with multiplicity one. This result confirms Ilmanen's multiplicity-one conjecture under the assumption that the mean curvature is of type- I . As a corollary, we show that the mean curvature at the first singular time of a closed smooth embedded mean curvature flow in {\mathbb R}^3 is at least of type- I .
ISSN:1435-9855
1435-9863
DOI:10.4171/jems/1090