On Ilmanen’s multiplicity-one conjecture for mean curvature flow with type-$I$ mean curvature
In this paper, we show that if the mean curvature of a closed smooth embedded mean curvature flow in {\mathbb R}^3 is of type- I , then the rescaled flow at the first finite singular time converges smoothly to a self-shrinker flow with multiplicity one. This result confirms Ilmanen's multiplici...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2022-01, Vol.24 (1), p.37-135 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we show that if the mean curvature of a closed smooth embedded mean curvature flow in
{\mathbb R}^3
is of type-
I
, then the rescaled flow at the first finite singular time converges smoothly to a self-shrinker flow with multiplicity one. This result confirms Ilmanen's multiplicity-one conjecture under the assumption that the mean curvature is of type-
I
. As a corollary, we show that the mean curvature at the first singular time of a closed smooth embedded mean curvature flow in
{\mathbb R}^3
is at least of type-
I
. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/jems/1090 |