A thresholding algorithm for Willmore-type flows via fourth-order linear parabolic equation

We propose a thresholding algorithm for Willmore-type flows in \mathbb{R}^{N} . This algorithm is constructed based on the asymptotic expansion of the solution to the initial value problem for a fourth-order linear parabolic partial differential equation whose initial data is the indicator function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interfaces and free boundaries 2024-11
Hauptverfasser: Ishii, Katsuyuki, Kohsaka, Yoshihito, Miyake, Nobuhito, Sakakibara, Koya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a thresholding algorithm for Willmore-type flows in \mathbb{R}^{N} . This algorithm is constructed based on the asymptotic expansion of the solution to the initial value problem for a fourth-order linear parabolic partial differential equation whose initial data is the indicator function on the compact set \Omega_{0} . The main results of this paper demonstrate that the boundary \partial\Omega(t) of the new set \Omega(t) , generated by our algorithm, is included in O(t) -neighborhood of \partial\Omega_{0} for small t>0 and that the normal velocity from \partial\Omega_{0} to \partial\Omega(t) is nearly equal to the L^{2} -gradient of Willmore-type energy for small t>0 . Finally, numerical examples of planar curves governed by the Willmore flow are provided by using our thresholding algorithm.
ISSN:1463-9963
1463-9971
DOI:10.4171/ifb/533