Stability and attractors for the quasi-steady equation of cellular flames

We continue the study a simple integro-differential equation: the Quasi-Steady equation (QS) of flame front dynamics. This equation is dynamically similar to the Kuramoto-Sivashinsky (KS) equation. In \cite{FGS03}, where it was introduced, its well-posedness and proximity for finite time intervals t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interfaces and free boundaries 2006-01, Vol.8 (3), p.301-316
Hauptverfasser: Brauner, Claude-Michel, Frankel, Michael, Hulshof, Josephus, Roytburd, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We continue the study a simple integro-differential equation: the Quasi-Steady equation (QS) of flame front dynamics. This equation is dynamically similar to the Kuramoto-Sivashinsky (KS) equation. In \cite{FGS03}, where it was introduced, its well-posedness and proximity for finite time intervals to the KS equation in Sobolev spaces of periodic functions were established. Here we demonstrate that QS possesses a universal absorbing set, and a compact attractor. Furthermore we show that the attractor is of a finite Hausdorff dimension, and give an estimate on it. We discuss relationship with the Kuramoto-Sivashinsky and Burgers-Sivashinsky equations.
ISSN:1463-9963
1463-9971
DOI:10.4171/IFB/145