Groups with finitely many Busemann points
We show that an infinite finitely generated group G is virtually \mathbb{Z} if and only if every Cayley graph of G contains only finitely many Busemann points in its horofunction boundary. This complements a previous result of the second named author and M. Tointon.
Gespeichert in:
Veröffentlicht in: | Groups, geometry and dynamics geometry and dynamics, 2024-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that an infinite finitely generated group G is virtually \mathbb{Z} if and only if every Cayley graph of G contains only finitely many Busemann points in its horofunction boundary. This complements a previous result of the second named author and M. Tointon. |
---|---|
ISSN: | 1661-7207 1661-7215 |
DOI: | 10.4171/ggd/824 |