Groups with finitely many Busemann points

We show that an infinite finitely generated group G is virtually \mathbb{Z} if and only if every Cayley graph of G contains only finitely many Busemann points in its horofunction boundary. This complements a previous result of the second named author and M. Tointon.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2024-09
Hauptverfasser: Ron-George, Liran, Yadin, Ariel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that an infinite finitely generated group G is virtually \mathbb{Z} if and only if every Cayley graph of G contains only finitely many Busemann points in its horofunction boundary. This complements a previous result of the second named author and M. Tointon.
ISSN:1661-7207
1661-7215
DOI:10.4171/ggd/824