Deciding if a hyperbolic group splits over a given quasiconvex subgroup

We present an algorithm which decides whether a given quasiconvex residually finite subgroup H of a hyperbolic group G is associated with a splitting. The methods developed also provide algorithms for computing the number of filtered ends \tilde{e}(G,H) of H in G under certain hypotheses and give a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2024-08
1. Verfasser: MacManus, Joseph Paul
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an algorithm which decides whether a given quasiconvex residually finite subgroup H of a hyperbolic group G is associated with a splitting. The methods developed also provide algorithms for computing the number of filtered ends \tilde{e}(G,H) of H in G under certain hypotheses and give a new straightforward algorithm for computing the number of ends e(G,H) of the Schreier graph of H . Our techniques extend those of Barrett via the use of labelled digraphs, the languages of which encode information on the connectivity of \partial G - \Lambda H .
ISSN:1661-7207
1661-7215
DOI:10.4171/ggd/816