On $\mathbb{Z}^{d}$-odometers associated to integer matrices
We extend the results by Giordano, Putnam, and Skau (2019) on characterization of conjugacy, isomorphism, and continuous orbit equivalence of \mathbb{Z}^{d} -odometers to dimensions d>2 . We then apply these extensions to the case of odometers defined by matrices with integer coefficients.
Gespeichert in:
Veröffentlicht in: | Groups, geometry and dynamics geometry and dynamics, 2024-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the results by Giordano, Putnam, and Skau (2019) on characterization of conjugacy, isomorphism, and continuous orbit equivalence of \mathbb{Z}^{d} -odometers to dimensions d>2 . We then apply these extensions to the case of odometers defined by matrices with integer coefficients. |
---|---|
ISSN: | 1661-7207 1661-7215 |
DOI: | 10.4171/ggd/762 |