On $\mathbb{Z}^{d}$-odometers associated to integer matrices

We extend the results by Giordano, Putnam, and Skau (2019) on characterization of conjugacy, isomorphism, and continuous orbit equivalence of \mathbb{Z}^{d} -odometers to dimensions d>2 . We then apply these extensions to the case of odometers defined by matrices with integer coefficients.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2024-01
Hauptverfasser: Merenkov, Sergei, Sabitova, Maria
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the results by Giordano, Putnam, and Skau (2019) on characterization of conjugacy, isomorphism, and continuous orbit equivalence of \mathbb{Z}^{d} -odometers to dimensions d>2 . We then apply these extensions to the case of odometers defined by matrices with integer coefficients.
ISSN:1661-7207
1661-7215
DOI:10.4171/ggd/762