Exponent of self-similar finite $p$-groups

Let p be a prime and G a pro- p group of finite rank that admits a faithful, self-similar action on the p -ary rooted tree. We prove that if the set \{g\in G \mid g^{p^n}=1\} is a nontrivial subgroup for some n , then G is a finite p -group with exponent at most p^n . This applies, in particular, to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2023-10, Vol.18 (4), p.1369-1375
Hauptverfasser: Dantas, Alex C., de Melo, Emerson
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let p be a prime and G a pro- p group of finite rank that admits a faithful, self-similar action on the p -ary rooted tree. We prove that if the set \{g\in G \mid g^{p^n}=1\} is a nontrivial subgroup for some n , then G is a finite p -group with exponent at most p^n . This applies, in particular, to power abelian p -groups.
ISSN:1661-7207
1661-7215
DOI:10.4171/GGD/754