Groups with minimal harmonic functions as small as you like (with an appendix by Nicolás Matte Bon)

For any order of growth f(n)=o(\log n) , we construct a finitely-generated group G and a set of generators S such that the Cayley graph of G with respect to S supports a harmonic function with growth f but does not support any harmonic function with slower growth. The construction uses permutational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2024-01, Vol.18 (1), p.1-24
Hauptverfasser: Amir, Gideon, Kozma, Gady
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For any order of growth f(n)=o(\log n) , we construct a finitely-generated group G and a set of generators S such that the Cayley graph of G with respect to S supports a harmonic function with growth f but does not support any harmonic function with slower growth. The construction uses permutational wreath products \mathbb{Z}/2\wr_{X}\Gamma in which the base group \Gamma is defined via its properly chosen action on X .
ISSN:1661-7207
1661-7215
DOI:10.4171/ggd/748