Maximal subgroups and von Neumann subalgebras with the Haagerup property

We initiate a study of maximal subgroups and maximal von Neumann subalgebras which have the Haagerup property. We determine maximal Haagerup subgroups inside \mathbb{Z}^2 \rtimes \operatorname{SL}_2(\mathbb{Z}) and obtain several explicit instances where maximal Haagerup subgroups yield maximal Haag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2021-01, Vol.15 (3), p.849-892
Hauptverfasser: Jiang, Yongle, Skalski, Adam
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We initiate a study of maximal subgroups and maximal von Neumann subalgebras which have the Haagerup property. We determine maximal Haagerup subgroups inside \mathbb{Z}^2 \rtimes \operatorname{SL}_2(\mathbb{Z}) and obtain several explicit instances where maximal Haagerup subgroups yield maximal Haagerup subalgebras. Our techniques are on one hand based on group-theoretic considerations, and on the other on certain results on intermediate von Neumann algebras, in particular these allowing us to deduce that all the intermediate algebras for certain inclusions arise from groups or from group actions. Some remarks and examples concerning maximal non-(T) subgroups and subalgebras are also presented, and we answer two questions of Ge regarding maximal von Neumann subalgebras.
ISSN:1661-7207
1661-7215
DOI:10.4171/ggd/614