The $\omega$-Borel invariant for representations into $\mathrm{SL}(n,\mathbb{C}_\omega)
Let \Gamma be the fundamental group of a complete hyperbolic 3 -manifold M with toric cusps. By following [3] we define the \omega -Borel invariant \beta_n^\omega(\rho_\omega) associated to a representation \rho_\omega\colon \Gamma \rightarrow \mathrm{SL}(n,\mathbb C_\omega) , where \mathbb C_\omega...
Gespeichert in:
Veröffentlicht in: | Groups, geometry and dynamics geometry and dynamics, 2019-05, Vol.13 (3), p.981-1006 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
\Gamma
be the fundamental group of a complete hyperbolic
3
-manifold
M
with toric cusps. By following [3] we define the
\omega
-Borel invariant
\beta_n^\omega(\rho_\omega)
associated to a representation
\rho_\omega\colon \Gamma \rightarrow \mathrm{SL}(n,\mathbb C_\omega)
, where
\mathbb C_\omega
is a field introduced by [18] which can be constructed as a quotient of a suitable subset of
\mathbb C^\N
with the data of a non-principal ultrafilter
\omega
on
\N
and a real divergent sequence
\lambda_l
such that
\lambda_l \geq 1
.
Since a sequence of
\omega
-bounded representations
\rho_l
into
\mathrm{SL}(n,\mathbb C)
determines a representation
\rho_\omega
into
\operatorname{SL}(n,\mathbb C_\omega)
, for
n=2
we study the relation between the invariant
\beta^\omega_2(\rho_\omega)
and the sequence of Borel invariants
\beta_2(\rho_l)
. We conclude by showing that if a sequence of representations
\rho_l\colon \Gamma \rightarrow \mathrm{SL}(2,\mathbb C)
induces a representation
\rho_\omega\colon \Gamma \rightarrow \operatorname{SL}(2,\mathbb C_\omega)
which determines a reducible action on the asymptotic cone
C_\omega(\mathbb{H}^3,d/\lambda_l,O)
with non-trivial length function, then it holds
\beta^\omega_2(\rho_\omega)=0
. |
---|---|
ISSN: | 1661-7207 1661-7215 |
DOI: | 10.4171/ggd/511 |