On the asymptotics of visible elements and homogeneous equations in surface groups

Let $F$ be a group whose abelianization is $\mathbb{Z}^k$, $k\geq 2$. An element of $F$ is called visible if its image in the abelianization is visible, that is, the greatest common divisor of its coordinates is 1. In this paper we compute three types of densities, annular, even and odd spherical, o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2012-01, Vol.6 (4), p.619-638
Hauptverfasser: Antolín, Yago, Ciobanu, Laura, Viles, Noèlia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $F$ be a group whose abelianization is $\mathbb{Z}^k$, $k\geq 2$. An element of $F$ is called visible if its image in the abelianization is visible, that is, the greatest common divisor of its coordinates is 1. In this paper we compute three types of densities, annular, even and odd spherical, of visible elements in surface groups. We then use our results to show that the probability of a homogeneous equation in a surface group to have solutions is neither 0 nor 1, as the lengths of the right- and left-hand side of the equation go to infinity.
ISSN:1661-7207
1661-7215
DOI:10.4171/GGD/167