The $p$-adic monodromy group of abelian varieties over global function fields of characteristic $p
We prove an analogue of the Tate isogeny conjecture and the semi-simplicity conjecture for overconvergent crystalline Dieudonné modules of abelian varieties defined over global function fields of characteristic p . As a corollary we deduce that monodromy groups of such overconvergent crystalline Die...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2022, Vol.27, p.1509-1579 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove an analogue of the Tate isogeny conjecture and the semi-simplicity conjecture for overconvergent crystalline Dieudonné modules of abelian varieties defined over global function fields of characteristic p . As a corollary we deduce that monodromy groups of such overconvergent crystalline Dieudonné modules are reductive, and after a finite base change of coefficients their connected components are the same as the connected components of monodromy groups of Galois representations on the corresponding l -adic Tate modules, for l different from p . We also show such a result for general compatible systems incorporating overconvergent F -isocrystals, conditional on a result of Abe. |
---|---|
ISSN: | 1431-0635 1431-0643 |
DOI: | 10.4171/dm/903 |