Rank inequalities for the Heegaard Floer homology of branched covers
We show that if L is a nullhomologous link in a 3-manifold Y and \Sigma(Y, L) is a double cover of Y branched along L then for each spin ^c -structure \mathfrak{s} on Y there is an inequality \dim\widehat{HF}(\Sigma(Y, L), \pi^\ast\mathfrak{s}; \mathbb{F}_2) \geq \dim \widehat{HF} (Y, \mathfrak{s};...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2022, Vol.27, p.581-612 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that if
L
is a nullhomologous link in a 3-manifold
Y
and
\Sigma(Y, L)
is a double cover of
Y
branched along
L
then for each spin
^c
-structure
\mathfrak{s}
on
Y
there is an inequality
\dim\widehat{HF}(\Sigma(Y, L), \pi^\ast\mathfrak{s}; \mathbb{F}_2) \geq \dim \widehat{HF} (Y, \mathfrak{s}; \mathbb{F}_2).
We discuss the relationship with the
L
-space conjecture and give some other topological applications, as well as an analogous result for sutured Floer homology. |
---|---|
ISSN: | 1431-0635 1431-0643 |
DOI: | 10.4171/dm/878 |