Arithmetic statistics and noncommutative Iwasawa theory
Let p be an odd prime. Associated to a pair (E, \mathcal{F}_\infty) consisting of a rational elliptic curve E and a p -adic Lie extension \mathcal{F}_\infty of \mathbb{Q} , is the p -primary Selmer group \mathrm{Sel}_{p^{\infty}}(E/\mathcal{F}_\infty) of E over \mathcal{F}_\infty . In this paper, we...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2022, Vol.27, p.89-149 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let p be an odd prime. Associated to a pair (E, \mathcal{F}_\infty) consisting of a rational elliptic curve E and a p -adic Lie extension \mathcal{F}_\infty of \mathbb{Q} , is the p -primary Selmer group \mathrm{Sel}_{p^{\infty}}(E/\mathcal{F}_\infty) of E over \mathcal{F}_\infty . In this paper, we study the arithmetic statistics for the algebraic structure of this Selmer group. The results provide insights into the asymptotics for the growth of Mordell-Weil ranks of elliptic curves in noncommutative towers. |
---|---|
ISSN: | 1431-0635 1431-0643 |
DOI: | 10.4171/dm/867 |