Arithmetic statistics and noncommutative Iwasawa theory

Let p be an odd prime. Associated to a pair (E, \mathcal{F}_\infty) consisting of a rational elliptic curve E and a p -adic Lie extension \mathcal{F}_\infty of \mathbb{Q} , is the p -primary Selmer group \mathrm{Sel}_{p^{\infty}}(E/\mathcal{F}_\infty) of E over \mathcal{F}_\infty . In this paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2022, Vol.27, p.89-149
Hauptverfasser: Kundu, Debanjana, Lei, Antonio, Ray, Anwesh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let p be an odd prime. Associated to a pair (E, \mathcal{F}_\infty) consisting of a rational elliptic curve E and a p -adic Lie extension \mathcal{F}_\infty of \mathbb{Q} , is the p -primary Selmer group \mathrm{Sel}_{p^{\infty}}(E/\mathcal{F}_\infty) of E over \mathcal{F}_\infty . In this paper, we study the arithmetic statistics for the algebraic structure of this Selmer group. The results provide insights into the asymptotics for the growth of Mordell-Weil ranks of elliptic curves in noncommutative towers.
ISSN:1431-0635
1431-0643
DOI:10.4171/dm/867