Universally defining finitely generated subrings of global fields

It is shown that any finitely generated subring of a global field has a universal first-order definition in its fraction field. This covers Koenigsmann's result for the ring of integers and its subsequent extensions to rings of integers in number fields and rings of S -integers in global functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2021, Vol.26, p.1851-1869
1. Verfasser: Daans, Nicolas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that any finitely generated subring of a global field has a universal first-order definition in its fraction field. This covers Koenigsmann's result for the ring of integers and its subsequent extensions to rings of integers in number fields and rings of S -integers in global function fields of odd characteristic. In this article a proof is presented which is uniform in all global fields, including the characteristic two case, where the result is entirely novel. Furthermore, the proposed method results in universal formulae requiring significantly fewer quantifiers than the formulae that can be derived through the previous approaches.
ISSN:1431-0635
1431-0643
DOI:10.4171/dm/858