Stability of Equivariant Vector Bundles over Toric Varieties
We give a complete answer to the question of (semi)stability of tangent bundles on any nonsingular complex projective toric variety with Picard number 2 by using combinatorial criterion of (semi)stability of an equivariant sheaf. We also give a complete answer to the question of (semi)stability of t...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2020, Vol.25, p.1787-1833 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a complete answer to the question of (semi)stability of tangent bundles on any nonsingular complex projective toric variety with Picard number 2 by using combinatorial criterion of (semi)stability of an equivariant sheaf. We also give a complete answer to the question of (semi)stability of tangent bundles on all toric Fano 4-folds with Picard number \leq 3 which are classified by Batyrev [1]. We construct a collection of equivariant indecomposable rank 2 vector bundles on Bott towers and pseudo-symmetric toric Fano varieties. Furthermore, in case of Bott towers, we show the existence of an equivariant stable rank 2 vector bundle with certain Chern classes with respect to a suitable polarization. |
---|---|
ISSN: | 1431-0635 1431-0643 |
DOI: | 10.4171/dm/785 |