Stability of Equivariant Vector Bundles over Toric Varieties

We give a complete answer to the question of (semi)stability of tangent bundles on any nonsingular complex projective toric variety with Picard number 2 by using combinatorial criterion of (semi)stability of an equivariant sheaf. We also give a complete answer to the question of (semi)stability of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2020, Vol.25, p.1787-1833
Hauptverfasser: Dasgupta, Jyoti, Dey, Arijit, Khan, Bivas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a complete answer to the question of (semi)stability of tangent bundles on any nonsingular complex projective toric variety with Picard number 2 by using combinatorial criterion of (semi)stability of an equivariant sheaf. We also give a complete answer to the question of (semi)stability of tangent bundles on all toric Fano 4-folds with Picard number \leq 3 which are classified by Batyrev [1]. We construct a collection of equivariant indecomposable rank 2 vector bundles on Bott towers and pseudo-symmetric toric Fano varieties. Furthermore, in case of Bott towers, we show the existence of an equivariant stable rank 2 vector bundle with certain Chern classes with respect to a suitable polarization.
ISSN:1431-0635
1431-0643
DOI:10.4171/dm/785