Cotilting Sheaves over Weighted Noncommutative Regular Projective Curves

We consider the category \mathrm{Qcoh}\,\mathbb{X} of quasicoherent sheaves where \mathbb{X} is a weighted noncommutative regular projective curve over a field k . This category is a hereditary, locally noetherian Grothendieck category. We classify all indecomposable pure-injective sheaves and all c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2020, Vol.25, p.1029-1077
Hauptverfasser: Kussin, Dirk, Laking, Rosanna
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the category \mathrm{Qcoh}\,\mathbb{X} of quasicoherent sheaves where \mathbb{X} is a weighted noncommutative regular projective curve over a field k . This category is a hereditary, locally noetherian Grothendieck category. We classify all indecomposable pure-injective sheaves and all cotilting sheaves of slope \infty . In the cases of nonnegative orbifold Euler characteristic this leads to a classification of pure-injective indecomposable sheaves and a description of all large cotilting sheaves in \mathrm{Qcoh}\,\mathbb{X} .
ISSN:1431-0635
1431-0643
DOI:10.4171/dm/770