Frobenius and Spherical Codomains and Neighbourhoods
Given an exact functor between triangulated categories which admits both adjoints and whose cotwist is either zero or an autoequivalence, we show how to associate a unique full triangulated subcategory of the codomain on which the functor becomes either Frobenius or spherical, respectively. We illus...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2020, Vol.25, p.483-525 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given an exact functor between triangulated categories which admits both adjoints and whose cotwist is either zero or an autoequivalence, we show how to associate a unique full triangulated subcategory of the codomain on which the functor becomes either Frobenius or spherical, respectively. We illustrate our construction with examples coming from projective bundles and smooth blowups. This work generalises results about spherical subcategories obtained by Martin Kalck, David Ploog and the first author. |
---|---|
ISSN: | 1431-0635 1431-0643 |
DOI: | 10.4171/dm/755 |