Essentially Finite Vector Bundles on Normal Pseudo-Proper Algebraic Stacks

Let X be a normal, connected and projective variety over an algebraically closed field k . In [ I. Biswas and J. P. P. dos Santos , J. Inst. Math. Jussieu 10, No. 2, 225–234 (2011; Zbl 1214.14037)] and [ M. Antei and V. B. Mehta , Arch. Math. 97, No. 6, 523–527 (2011; Zbl 1236.14041)] it is proved t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2020, Vol.25, p.159-169
Hauptverfasser: Tonini, Fabio, Zhang, Lei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a normal, connected and projective variety over an algebraically closed field k . In [ I. Biswas and J. P. P. dos Santos , J. Inst. Math. Jussieu 10, No. 2, 225–234 (2011; Zbl 1214.14037)] and [ M. Antei and V. B. Mehta , Arch. Math. 97, No. 6, 523–527 (2011; Zbl 1236.14041)] it is proved that a vector bundle V on X is essentially finite if and only if it is trivialized by a proper surjective morphism f:Y\longrightarrow X . In this paper we introduce a different approach to this problem which allows to extend the results to normal, connected and strongly pseudo-proper algebraic stack of finite type over an arbitrary field k .
ISSN:1431-0635
1431-0643
DOI:10.4171/dm/742