Essentially Finite Vector Bundles on Normal Pseudo-Proper Algebraic Stacks
Let X be a normal, connected and projective variety over an algebraically closed field k . In [ I. Biswas and J. P. P. dos Santos , J. Inst. Math. Jussieu 10, No. 2, 225–234 (2011; Zbl 1214.14037)] and [ M. Antei and V. B. Mehta , Arch. Math. 97, No. 6, 523–527 (2011; Zbl 1236.14041)] it is proved t...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2020, Vol.25, p.159-169 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a normal, connected and projective variety over an algebraically closed field
k
. In [
I. Biswas
and
J. P. P. dos Santos
, J. Inst. Math. Jussieu 10, No. 2, 225–234 (2011; Zbl 1214.14037)] and [
M. Antei
and
V. B. Mehta
, Arch. Math. 97, No. 6, 523–527 (2011; Zbl 1236.14041)] it is proved that a vector bundle
V
on
X
is essentially finite if and only if it is trivialized by a proper surjective morphism
f:Y\longrightarrow X
. In this paper we introduce a different approach to this problem which allows to extend the results to normal, connected and strongly pseudo-proper algebraic stack of finite type over an arbitrary field
k
. |
---|---|
ISSN: | 1431-0635 1431-0643 |
DOI: | 10.4171/dm/742 |