Kähler Geometry on Hurwitz Spaces

The classical Hurwitz space \mathcal{H}^{n,b} is a fine moduli space for simple branched coverings of the Riemann sphere \mathbb{P}^1 by compact hyperbolic Riemann surfaces. In the article we study a generalized Weil-Petersson metric on the Hurwitz space, which was introduced in [R. Axelsson et al.,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2018, Vol.23, p.1829-1861
1. Verfasser: Naumann, Philipp
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1861
container_issue
container_start_page 1829
container_title Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.
container_volume 23
creator Naumann, Philipp
description The classical Hurwitz space \mathcal{H}^{n,b} is a fine moduli space for simple branched coverings of the Riemann sphere \mathbb{P}^1 by compact hyperbolic Riemann surfaces. In the article we study a generalized Weil-Petersson metric on the Hurwitz space, which was introduced in [R. Axelsson et al., Manuscr. Math. 147, No. 1–2, 63–79 (2015; Zbl 1319.32012)]. For this purpose, Horikawa's deformation theory of holomorphic maps is refined in the presence of hermitian metrics in order to single out distinguished representatives. Our main result is a curvature formula for a subbundle of the tangent bundle on the Hurwitz space obtained as a direct image. This covers the case of the curvature of the fibers of the natural map \mathcal{H}^{n,b} \to \mathcal{M}_g .
doi_str_mv 10.4171/dm/661
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_dm_661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_dm_661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-36c200049362c044dc323a025a45ef58eb4f4e6b09914b85578a215b2f867e213</originalsourceid><addsrcrecordid>eNo9j0FKAzEUQIMoWGt7hsGFu7H_Jz-ZzFKKtmLBhboOmcwPVjpOSUZKPY838WJWFFfvrR48IaYIV4QVztpuZgweiRGSwhIMqeN_V_pUnOX8CoC1qfRIXNx_fb5sOBUL7jse0r7o34rle9qth4_icesD53NxEv0m8-SPY_F8e_M0X5arh8Xd_HpVBol2KJUJEgCoVkYGIGqDksqD1J40R225oUhsGqhrpMZqXVkvUTcyWlOxRDUWl7_dkPqcE0e3TevOp71DcD9nru3c4Ux9AyUwPo4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kähler Geometry on Hurwitz Spaces</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Naumann, Philipp</creator><creatorcontrib>Naumann, Philipp</creatorcontrib><description>The classical Hurwitz space \mathcal{H}^{n,b} is a fine moduli space for simple branched coverings of the Riemann sphere \mathbb{P}^1 by compact hyperbolic Riemann surfaces. In the article we study a generalized Weil-Petersson metric on the Hurwitz space, which was introduced in [R. Axelsson et al., Manuscr. Math. 147, No. 1–2, 63–79 (2015; Zbl 1319.32012)]. For this purpose, Horikawa's deformation theory of holomorphic maps is refined in the presence of hermitian metrics in order to single out distinguished representatives. Our main result is a curvature formula for a subbundle of the tangent bundle on the Hurwitz space obtained as a direct image. This covers the case of the curvature of the fibers of the natural map \mathcal{H}^{n,b} \to \mathcal{M}_g .</description><identifier>ISSN: 1431-0635</identifier><identifier>EISSN: 1431-0643</identifier><identifier>DOI: 10.4171/dm/661</identifier><language>eng</language><ispartof>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung., 2018, Vol.23, p.1829-1861</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Naumann, Philipp</creatorcontrib><title>Kähler Geometry on Hurwitz Spaces</title><title>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.</title><description>The classical Hurwitz space \mathcal{H}^{n,b} is a fine moduli space for simple branched coverings of the Riemann sphere \mathbb{P}^1 by compact hyperbolic Riemann surfaces. In the article we study a generalized Weil-Petersson metric on the Hurwitz space, which was introduced in [R. Axelsson et al., Manuscr. Math. 147, No. 1–2, 63–79 (2015; Zbl 1319.32012)]. For this purpose, Horikawa's deformation theory of holomorphic maps is refined in the presence of hermitian metrics in order to single out distinguished representatives. Our main result is a curvature formula for a subbundle of the tangent bundle on the Hurwitz space obtained as a direct image. This covers the case of the curvature of the fibers of the natural map \mathcal{H}^{n,b} \to \mathcal{M}_g .</description><issn>1431-0635</issn><issn>1431-0643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9j0FKAzEUQIMoWGt7hsGFu7H_Jz-ZzFKKtmLBhboOmcwPVjpOSUZKPY838WJWFFfvrR48IaYIV4QVztpuZgweiRGSwhIMqeN_V_pUnOX8CoC1qfRIXNx_fb5sOBUL7jse0r7o34rle9qth4_icesD53NxEv0m8-SPY_F8e_M0X5arh8Xd_HpVBol2KJUJEgCoVkYGIGqDksqD1J40R225oUhsGqhrpMZqXVkvUTcyWlOxRDUWl7_dkPqcE0e3TevOp71DcD9nru3c4Ux9AyUwPo4</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Naumann, Philipp</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>Kähler Geometry on Hurwitz Spaces</title><author>Naumann, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-36c200049362c044dc323a025a45ef58eb4f4e6b09914b85578a215b2f867e213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naumann, Philipp</creatorcontrib><collection>CrossRef</collection><jtitle>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naumann, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kähler Geometry on Hurwitz Spaces</atitle><jtitle>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.</jtitle><date>2018</date><risdate>2018</risdate><volume>23</volume><spage>1829</spage><epage>1861</epage><pages>1829-1861</pages><issn>1431-0635</issn><eissn>1431-0643</eissn><abstract>The classical Hurwitz space \mathcal{H}^{n,b} is a fine moduli space for simple branched coverings of the Riemann sphere \mathbb{P}^1 by compact hyperbolic Riemann surfaces. In the article we study a generalized Weil-Petersson metric on the Hurwitz space, which was introduced in [R. Axelsson et al., Manuscr. Math. 147, No. 1–2, 63–79 (2015; Zbl 1319.32012)]. For this purpose, Horikawa's deformation theory of holomorphic maps is refined in the presence of hermitian metrics in order to single out distinguished representatives. Our main result is a curvature formula for a subbundle of the tangent bundle on the Hurwitz space obtained as a direct image. This covers the case of the curvature of the fibers of the natural map \mathcal{H}^{n,b} \to \mathcal{M}_g .</abstract><doi>10.4171/dm/661</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1431-0635
ispartof Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung., 2018, Vol.23, p.1829-1861
issn 1431-0635
1431-0643
language eng
recordid cdi_crossref_primary_10_4171_dm_661
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Kähler Geometry on Hurwitz Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=K%C3%A4hler%20Geometry%20on%20Hurwitz%20Spaces&rft.jtitle=Documenta%20mathematica%20Journal%20der%20Deutschen%20Mathematiker-Vereinigung.&rft.au=Naumann,%20Philipp&rft.date=2018&rft.volume=23&rft.spage=1829&rft.epage=1861&rft.pages=1829-1861&rft.issn=1431-0635&rft.eissn=1431-0643&rft_id=info:doi/10.4171/dm/661&rft_dat=%3Ccrossref%3E10_4171_dm_661%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true