Kähler Geometry on Hurwitz Spaces

The classical Hurwitz space \mathcal{H}^{n,b} is a fine moduli space for simple branched coverings of the Riemann sphere \mathbb{P}^1 by compact hyperbolic Riemann surfaces. In the article we study a generalized Weil-Petersson metric on the Hurwitz space, which was introduced in [R. Axelsson et al.,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2018, Vol.23, p.1829-1861
1. Verfasser: Naumann, Philipp
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classical Hurwitz space \mathcal{H}^{n,b} is a fine moduli space for simple branched coverings of the Riemann sphere \mathbb{P}^1 by compact hyperbolic Riemann surfaces. In the article we study a generalized Weil-Petersson metric on the Hurwitz space, which was introduced in [R. Axelsson et al., Manuscr. Math. 147, No. 1–2, 63–79 (2015; Zbl 1319.32012)]. For this purpose, Horikawa's deformation theory of holomorphic maps is refined in the presence of hermitian metrics in order to single out distinguished representatives. Our main result is a curvature formula for a subbundle of the tangent bundle on the Hurwitz space obtained as a direct image. This covers the case of the curvature of the fibers of the natural map \mathcal{H}^{n,b} \to \mathcal{M}_g .
ISSN:1431-0635
1431-0643
DOI:10.4171/dm/661