Dimension Theory of the Moduli Space of Twisted $K$-Differentials
In this note we extend the dimension theory for the spaces \widetilde{\mathcal{H}}_g^k(\mu) of twisted k -differentials defined by Farkas and Pandharipande in [G. Farkas and R. Pandharipande, J. Inst. Math. Jussieu 17, No. 3, 615–672 (2018; Zbl 06868654)] to the case k>1 . In particular, we show...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2018, Vol.23, p.871-894 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note we extend the dimension theory for the spaces
\widetilde{\mathcal{H}}_g^k(\mu)
of twisted
k
-differentials defined by Farkas and Pandharipande in [G. Farkas and R. Pandharipande, J. Inst. Math. Jussieu 17, No. 3, 615–672 (2018; Zbl 06868654)] to the case
k>1
. In particular, we show that the intersection
\mathcal{H}_g^k(\mu)=\widetilde{\mathcal{H}}_g^k(\mu) \cap \mathcal{M}_{g,n}
is a union of smooth components of the expected dimensions for all
k\geq 0
. We also extend a conjectural formula from [Zbl 06868654] for a weighted fundamental class of
\widetilde{\mathcal{H}}_g^k(\mu)
and provide evidence in low genus. If true, this conjecture gives a recursive way to compute the cycle class
[\overline{\mathcal{H}}_g^k(\mu)]
of the closure of
\mathcal{H}_g^k(\mu)
for
k\geq 1,\mu
arbitrary. |
---|---|
ISSN: | 1431-0635 1431-0643 |
DOI: | 10.4171/dm/637 |