Automorphisms of a Symmetric Product of a Curve (with an Appendix by Najmuddin Fakhruddin)
Let X be an irreducible smooth projective curve of genus g>2 defined over an algebraically closed field of characteristic different from two. We prove that the natural homomorphism from the automorphisms of X to the automorphisms of the symmetric product \mathrm{Sym}^d(X) is an isomorphism if d&g...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2017, Vol.22, p.1181-1192, Article 1181 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X be an irreducible smooth projective curve of genus g>2 defined over an algebraically closed field of characteristic different from two. We prove that the natural homomorphism from the automorphisms of X to the automorphisms of the symmetric product \mathrm{Sym}^d(X) is an isomorphism if d>2g-2 . In an appendix, Fakhruddin proves that the isomorphism class of the symmetric product of a curve determines the isomorphism class of the curve. |
---|---|
ISSN: | 1431-0635 1431-0643 |
DOI: | 10.4171/dm/591 |