Automorphisms of a Symmetric Product of a Curve (with an Appendix by Najmuddin Fakhruddin)

Let X be an irreducible smooth projective curve of genus g>2 defined over an algebraically closed field of characteristic different from two. We prove that the natural homomorphism from the automorphisms of X to the automorphisms of the symmetric product \mathrm{Sym}^d(X) is an isomorphism if d&g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2017, Vol.22, p.1181-1192, Article 1181
Hauptverfasser: Biswas, Indranil, Gómez, Tomás L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be an irreducible smooth projective curve of genus g>2 defined over an algebraically closed field of characteristic different from two. We prove that the natural homomorphism from the automorphisms of X to the automorphisms of the symmetric product \mathrm{Sym}^d(X) is an isomorphism if d>2g-2 . In an appendix, Fakhruddin proves that the isomorphism class of the symmetric product of a curve determines the isomorphism class of the curve.
ISSN:1431-0635
1431-0643
DOI:10.4171/dm/591