The $K$-Theory of Versal Flags and Cohomological Invariants of Degree 3
Let G be a split semisimple linear algebraic group over a field and let X be a generic twisted flag variety of G . Extending the Hilbert basis techniques to Laurent polynomials over integers we give an explicit presentation of the Grothendieck ring K_0(X) in terms of generators and relations in the...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2017, Vol.22, p.1117-1148 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1148 |
---|---|
container_issue | |
container_start_page | 1117 |
container_title | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. |
container_volume | 22 |
creator | Baek, Sanghoon Devyatov, Rostislav Zainoulline, Kirill |
description | Let G be a split semisimple linear algebraic group over a field and let X be a generic twisted flag variety of G . Extending the Hilbert basis techniques to Laurent polynomials over integers we give an explicit presentation of the Grothendieck ring K_0(X) in terms of generators and relations in the case G=G^{sc}/\mu_2> is of Dynkin type A or C (here G^{sc} is the simply-connected cover of G ); we compute various groups of (indecomposable, semi-decomposable) cohomological invariants of degree 3, hence, generalizing and extending previous results in this direction. |
doi_str_mv | 10.4171/dm/589 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_dm_589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_dm_589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-561d10a600322d9910139d58d3608e64cf755f0f87cac65be96d62688cb814883</originalsourceid><addsrcrecordid>eNo9j11LwzAYhYMoODf9DbkY3tW9b9OkyaVUN4eD3UxvS5aPrtI2kgxh_94Oh1fP4XA48BDygPBUYIkL2y-4VFdkggXDDETBrv8z47fkLqUvAFSi5BOy2h0cnb_Ps5Ehnmjw9NPFpDu67HSTqB4srcIh9KELTWvGfj386Njq4ZjO4xfXROcom5Ebr7vk7i-cko_l6656yzbb1bp63mQm5_yYcYEWQQsAludWKQRkynJpmQDpRGF8ybkHL0ujjeB7p4QVuZDS7CUWUrIpefz7NTGkFJ2vv2Pb63iqEeqzfm37etRnv5oLSjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The $K$-Theory of Versal Flags and Cohomological Invariants of Degree 3</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Baek, Sanghoon ; Devyatov, Rostislav ; Zainoulline, Kirill</creator><creatorcontrib>Baek, Sanghoon ; Devyatov, Rostislav ; Zainoulline, Kirill</creatorcontrib><description>Let G be a split semisimple linear algebraic group over a field and let X be a generic twisted flag variety of G . Extending the Hilbert basis techniques to Laurent polynomials over integers we give an explicit presentation of the Grothendieck ring K_0(X) in terms of generators and relations in the case G=G^{sc}/\mu_2> is of Dynkin type A or C (here G^{sc} is the simply-connected cover of G ); we compute various groups of (indecomposable, semi-decomposable) cohomological invariants of degree 3, hence, generalizing and extending previous results in this direction.</description><identifier>ISSN: 1431-0635</identifier><identifier>EISSN: 1431-0643</identifier><identifier>DOI: 10.4171/dm/589</identifier><language>eng</language><ispartof>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung., 2017, Vol.22, p.1117-1148</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-561d10a600322d9910139d58d3608e64cf755f0f87cac65be96d62688cb814883</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,4012,27910,27911,27912</link.rule.ids></links><search><creatorcontrib>Baek, Sanghoon</creatorcontrib><creatorcontrib>Devyatov, Rostislav</creatorcontrib><creatorcontrib>Zainoulline, Kirill</creatorcontrib><title>The $K$-Theory of Versal Flags and Cohomological Invariants of Degree 3</title><title>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.</title><description>Let G be a split semisimple linear algebraic group over a field and let X be a generic twisted flag variety of G . Extending the Hilbert basis techniques to Laurent polynomials over integers we give an explicit presentation of the Grothendieck ring K_0(X) in terms of generators and relations in the case G=G^{sc}/\mu_2> is of Dynkin type A or C (here G^{sc} is the simply-connected cover of G ); we compute various groups of (indecomposable, semi-decomposable) cohomological invariants of degree 3, hence, generalizing and extending previous results in this direction.</description><issn>1431-0635</issn><issn>1431-0643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9j11LwzAYhYMoODf9DbkY3tW9b9OkyaVUN4eD3UxvS5aPrtI2kgxh_94Oh1fP4XA48BDygPBUYIkL2y-4VFdkggXDDETBrv8z47fkLqUvAFSi5BOy2h0cnb_Ps5Ehnmjw9NPFpDu67HSTqB4srcIh9KELTWvGfj386Njq4ZjO4xfXROcom5Ebr7vk7i-cko_l6656yzbb1bp63mQm5_yYcYEWQQsAludWKQRkynJpmQDpRGF8ybkHL0ujjeB7p4QVuZDS7CUWUrIpefz7NTGkFJ2vv2Pb63iqEeqzfm37etRnv5oLSjg</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Baek, Sanghoon</creator><creator>Devyatov, Rostislav</creator><creator>Zainoulline, Kirill</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>The $K$-Theory of Versal Flags and Cohomological Invariants of Degree 3</title><author>Baek, Sanghoon ; Devyatov, Rostislav ; Zainoulline, Kirill</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-561d10a600322d9910139d58d3608e64cf755f0f87cac65be96d62688cb814883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baek, Sanghoon</creatorcontrib><creatorcontrib>Devyatov, Rostislav</creatorcontrib><creatorcontrib>Zainoulline, Kirill</creatorcontrib><collection>CrossRef</collection><jtitle>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baek, Sanghoon</au><au>Devyatov, Rostislav</au><au>Zainoulline, Kirill</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The $K$-Theory of Versal Flags and Cohomological Invariants of Degree 3</atitle><jtitle>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.</jtitle><date>2017</date><risdate>2017</risdate><volume>22</volume><spage>1117</spage><epage>1148</epage><pages>1117-1148</pages><issn>1431-0635</issn><eissn>1431-0643</eissn><abstract>Let G be a split semisimple linear algebraic group over a field and let X be a generic twisted flag variety of G . Extending the Hilbert basis techniques to Laurent polynomials over integers we give an explicit presentation of the Grothendieck ring K_0(X) in terms of generators and relations in the case G=G^{sc}/\mu_2> is of Dynkin type A or C (here G^{sc} is the simply-connected cover of G ); we compute various groups of (indecomposable, semi-decomposable) cohomological invariants of degree 3, hence, generalizing and extending previous results in this direction.</abstract><doi>10.4171/dm/589</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-0635 |
ispartof | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung., 2017, Vol.22, p.1117-1148 |
issn | 1431-0635 1431-0643 |
language | eng |
recordid | cdi_crossref_primary_10_4171_dm_589 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | The $K$-Theory of Versal Flags and Cohomological Invariants of Degree 3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20$K$-Theory%20of%20Versal%20Flags%20and%20Cohomological%20Invariants%20of%20Degree%203&rft.jtitle=Documenta%20mathematica%20Journal%20der%20Deutschen%20Mathematiker-Vereinigung.&rft.au=Baek,%20Sanghoon&rft.date=2017&rft.volume=22&rft.spage=1117&rft.epage=1148&rft.pages=1117-1148&rft.issn=1431-0635&rft.eissn=1431-0643&rft_id=info:doi/10.4171/dm/589&rft_dat=%3Ccrossref%3E10_4171_dm_589%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |