The $K$-Theory of Versal Flags and Cohomological Invariants of Degree 3

Let G be a split semisimple linear algebraic group over a field and let X be a generic twisted flag variety of G . Extending the Hilbert basis techniques to Laurent polynomials over integers we give an explicit presentation of the Grothendieck ring K_0(X) in terms of generators and relations in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2017, Vol.22, p.1117-1148
Hauptverfasser: Baek, Sanghoon, Devyatov, Rostislav, Zainoulline, Kirill
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a split semisimple linear algebraic group over a field and let X be a generic twisted flag variety of G . Extending the Hilbert basis techniques to Laurent polynomials over integers we give an explicit presentation of the Grothendieck ring K_0(X) in terms of generators and relations in the case G=G^{sc}/\mu_2> is of Dynkin type A or C (here G^{sc} is the simply-connected cover of G ); we compute various groups of (indecomposable, semi-decomposable) cohomological invariants of degree 3, hence, generalizing and extending previous results in this direction.
ISSN:1431-0635
1431-0643
DOI:10.4171/dm/589