The $K$-Theory of Versal Flags and Cohomological Invariants of Degree 3
Let G be a split semisimple linear algebraic group over a field and let X be a generic twisted flag variety of G . Extending the Hilbert basis techniques to Laurent polynomials over integers we give an explicit presentation of the Grothendieck ring K_0(X) in terms of generators and relations in the...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2017, Vol.22, p.1117-1148 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a split semisimple linear algebraic group over a field and let X be a generic twisted flag variety of G . Extending the Hilbert basis techniques to Laurent polynomials over integers we give an explicit presentation of the Grothendieck ring K_0(X) in terms of generators and relations in the case G=G^{sc}/\mu_2> is of Dynkin type A or C (here G^{sc} is the simply-connected cover of G ); we compute various groups of (indecomposable, semi-decomposable) cohomological invariants of degree 3, hence, generalizing and extending previous results in this direction. |
---|---|
ISSN: | 1431-0635 1431-0643 |
DOI: | 10.4171/dm/589 |