Topological Conjugacy of Topological Markov Shifts and Cuntz–Krieger Algebras
For an irreducible non-permutation matrix A , the triplet (\mathcal{O}_A,\mathcal{D}_A,\rho^A) for the Cuntz–Krieger algebra \mathcal{O}_A , its canonical maximal abelian C^\ast -subalgebra \mathcal{D}_A , and its gauge action \rho^A is called the Cuntz–Krieger triplet. We introduce a notion of stro...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2017, Vol.22, p.873-915 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an irreducible non-permutation matrix
A
, the triplet
(\mathcal{O}_A,\mathcal{D}_A,\rho^A)
for the Cuntz–Krieger algebra
\mathcal{O}_A
, its canonical maximal abelian
C^\ast
-subalgebra
\mathcal{D}_A
, and its gauge action
\rho^A
is called the Cuntz–Krieger triplet. We introduce a notion of strong Morita equivalence in the Cuntz–Krieger triplets, and prove that two Cuntz–Krieger triplets
(\mathcal{O}_A,\mathcal{D}_A,\rho^A)
and
(\mathcal{O}_B,\mathcal{D}_B,\rho^B)
are strong Morita equivalent if and only if
A
and
B
are strong shift equivalent. We also show that the generalized gauge actions on the stabilized Cuntz–Krieger algebras are cocycle conjugate if the underlying matrices are strong shift equivalent. By clarifying K-theoretic behavior of the cocycle conjugacy, we investigate a relationship between cocycle conjugacy of the gauge actions on the stabilized Cuntz–Krieger algebras and topological conjugacy of the underlying topological Markov shifts. |
---|---|
ISSN: | 1431-0635 1431-0643 |
DOI: | 10.4171/dm/581 |