A combinatorial interpretation for Schreyer's tetragonal invariants
Schreyer has proved that the graded Betti numbers of a canonical tetragonal curve are determined by two integers b_1 and b_2 , associated to the curve through a certain geometric construction. In this article we prove that in the case of a smooth projective tetragonal curve on a toric surface, these...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2015, Vol.20, p.927-942 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Schreyer has proved that the graded Betti numbers of a canonical tetragonal curve are determined by two integers
b_1
and
b_2
, associated to the curve through a certain geometric construction. In this article we prove that in the case of a smooth projective tetragonal curve on a toric surface, these integers have easy interpretations in terms of the Newton polygon of its defining Laurent polynomial. We can use this to prove an intrinsicness result on Newton polygons of small lattice width. |
---|---|
ISSN: | 1431-0635 1431-0643 |
DOI: | 10.4171/dm/509 |