Realizability and admissibility under extension of $p$-adic and number fields
A finite group G is K -admissible if there is a G -crossed product K -division algebra. In this manuscript we study the behavior of admissibility under extensions of number fields M/K . We show that in many cases, including Sylow metacyclic and nilpotent groups whose order is prime to the number of...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2013, Vol.18, p.359-382 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A finite group
G
is
K
-admissible if there is a
G
-crossed product
K
-division algebra. In this manuscript we study the behavior of admissibility under extensions of number fields
M/K
. We show that in many cases, including Sylow metacyclic and nilpotent groups whose order is prime to the number of roots of unity in
M
, a
K
-admissible group
G
is
M
-admissible if and only if
G
satisfies the easily verifiable Liedahl condition over
M
. |
---|---|
ISSN: | 1431-0635 1431-0643 |
DOI: | 10.4171/dm/401 |