Realizability and admissibility under extension of $p$-adic and number fields

A finite group G is K -admissible if there is a G -crossed product K -division algebra. In this manuscript we study the behavior of admissibility under extensions of number fields M/K . We show that in many cases, including Sylow metacyclic and nilpotent groups whose order is prime to the number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2013, Vol.18, p.359-382
Hauptverfasser: Neftin, Danny, Vishne, Uzi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A finite group G is K -admissible if there is a G -crossed product K -division algebra. In this manuscript we study the behavior of admissibility under extensions of number fields M/K . We show that in many cases, including Sylow metacyclic and nilpotent groups whose order is prime to the number of roots of unity in M , a K -admissible group G is M -admissible if and only if G satisfies the easily verifiable Liedahl condition over M .
ISSN:1431-0635
1431-0643
DOI:10.4171/dm/401