The barycenter method on singular spaces

Compact convex cores with totally geodesic boundary are proven to uniquely minimize volume over all hyperbolic 3-manifolds in the same homotopy class. This solves a conjecture in Kleinian groups concerning acylindrical 3-manifolds. Closed hyperbolic manifolds are proven to uniquely minimize volume o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Commentarii mathematici Helvetici 2007-01, Vol.82 (1), p.133-173
1. Verfasser: Storm, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Compact convex cores with totally geodesic boundary are proven to uniquely minimize volume over all hyperbolic 3-manifolds in the same homotopy class. This solves a conjecture in Kleinian groups concerning acylindrical 3-manifolds. Closed hyperbolic manifolds are proven to uniquely minimize volume over all compact hyperbolic cone-manifolds in the same homotopy class with cone angles ≤2π. Closed hyperbolic manifolds are proven to minimize volume over all compact Alexandrov spaces with curvature bounded below by −1 in the same homotopy class. A version of the Besson–Courtois–Gallot theorem is proven for n-manifolds with boundary. The proofs extend the techniques of Besson–Courtois–Gallot.
ISSN:0010-2571
1420-8946
DOI:10.4171/CMH/87