The barycenter method on singular spaces
Compact convex cores with totally geodesic boundary are proven to uniquely minimize volume over all hyperbolic 3-manifolds in the same homotopy class. This solves a conjecture in Kleinian groups concerning acylindrical 3-manifolds. Closed hyperbolic manifolds are proven to uniquely minimize volume o...
Gespeichert in:
Veröffentlicht in: | Commentarii mathematici Helvetici 2007-01, Vol.82 (1), p.133-173 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Compact convex cores with totally geodesic boundary are proven to uniquely minimize volume over all hyperbolic 3-manifolds in the same homotopy class. This solves a conjecture in Kleinian groups concerning acylindrical 3-manifolds. Closed hyperbolic manifolds are proven to uniquely minimize volume over all compact hyperbolic cone-manifolds in the same homotopy class with cone angles ≤2π. Closed hyperbolic manifolds are proven to minimize volume over all compact Alexandrov spaces with curvature bounded below by −1 in the same homotopy class. A version of the Besson–Courtois–Gallot theorem is proven for n-manifolds with boundary. The proofs extend the techniques of Besson–Courtois–Gallot. |
---|---|
ISSN: | 0010-2571 1420-8946 |
DOI: | 10.4171/CMH/87 |