The maximum number of systoles for genus two Riemann surfaces with abelian differentials

In this article, we provide bounds on systoles associated to a holomorphic 1-form $\omega$ on a Riemann surface $X$. In particular, we show that if $X$ has genus two, then, up to homotopy, there are at most $10$ systolic loops on $(X, \omega)$ and, moreover, that this bound is realized by a unique t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Commentarii mathematici Helvetici 2019-01, Vol.94 (2), p.399-437
Hauptverfasser: Judge, Chris, Parlier, Hugo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we provide bounds on systoles associated to a holomorphic 1-form $\omega$ on a Riemann surface $X$. In particular, we show that if $X$ has genus two, then, up to homotopy, there are at most $10$ systolic loops on $(X, \omega)$ and, moreover, that this bound is realized by a unique translation surface up to homothety. For general genus $g$ and a holomorphic 1-form $\omega$ with one zero, we provide the optimal upper bound, $6g-3$, on the number of homotopy classes of systoles. If, in addition, $X$ is hyperelliptic, then we prove that the optimal upper bound is $6g-5$.
ISSN:0010-2571
1420-8946
DOI:10.4171/CMH/463