The maximum number of systoles for genus two Riemann surfaces with abelian differentials
In this article, we provide bounds on systoles associated to a holomorphic 1-form $\omega$ on a Riemann surface $X$. In particular, we show that if $X$ has genus two, then, up to homotopy, there are at most $10$ systolic loops on $(X, \omega)$ and, moreover, that this bound is realized by a unique t...
Gespeichert in:
Veröffentlicht in: | Commentarii mathematici Helvetici 2019-01, Vol.94 (2), p.399-437 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we provide bounds on systoles associated to a holomorphic 1-form $\omega$ on a Riemann surface $X$. In particular, we show that if $X$ has genus two, then, up to homotopy, there are at most $10$ systolic loops on $(X, \omega)$ and, moreover, that this bound is realized by a unique translation surface up to homothety. For general genus $g$ and a holomorphic 1-form $\omega$ with one zero, we provide the optimal upper bound, $6g-3$, on the number of homotopy classes of systoles. If, in addition, $X$ is hyperelliptic, then we prove that the optimal upper bound is $6g-5$. |
---|---|
ISSN: | 0010-2571 1420-8946 |
DOI: | 10.4171/CMH/463 |