The zero norm subspace of bounded cohomology of acylindrically hyperbolic groups

We construct combinatorial volume forms of hyperbolic three manifolds fibering over the circle. These forms define non-trivial classes in bounded cohomology. After introducing a new seminorm on exact bounded cohomology, we use these combinatorial classes to show that, in degree 3, the zero norm subs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Commentarii mathematici Helvetici 2019-01, Vol.94 (1), p.89-139
Hauptverfasser: Franceschini, Federico, Frigerio, Roberto, Pozzetti, Maria Beatrice, Sisto, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct combinatorial volume forms of hyperbolic three manifolds fibering over the circle. These forms define non-trivial classes in bounded cohomology. After introducing a new seminorm on exact bounded cohomology, we use these combinatorial classes to show that, in degree 3, the zero norm subspace of the bounded cohomology of an acylindrically hyperbolic group is infinite dimensional. In an appendix we use the same techniques to give a cohomological proof of a lower bound, originally due to Brock, on the volume of the mapping torus of a cobounded pseudo-Anosov homeomorphism of a closed surface in terms of its Teichmüller translation distance.
ISSN:0010-2571
1420-8946
DOI:10.4171/CMH/456