Finite-dimensional representations constructed from random walks

Given a 1-cocycle $b$ with coefficients in an orthogonal representation, we show that every finite dimensional summand of $b$ is cohomologically trivial if and only if $\| b(X_n) \|^2/n$ tends to a constant in probability, where $X_n$ is the trajectory of the random walk $(G,\mu)$. As a corollary, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Commentarii mathematici Helvetici 2018-01, Vol.93 (3), p.555-586
Hauptverfasser: Erschler, Anna, Ozawa, Narutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a 1-cocycle $b$ with coefficients in an orthogonal representation, we show that every finite dimensional summand of $b$ is cohomologically trivial if and only if $\| b(X_n) \|^2/n$ tends to a constant in probability, where $X_n$ is the trajectory of the random walk $(G,\mu)$. As a corollary, we obtain sufficient conditions for $G$ to satisfy Shalom's property $H_{\mathrm{FD}}$. Another application is a convergence to a constant in probability of $\mu^{*n}(e) -\mu^{*n}(g)$, $n\gg m$, normalized by its average with respect to $\mu^{*m}$, for any finitely generated infinite amenable group without infinite virtually abelian quotients. Finally, we show that the harmonic equivariant mapping of $G$ to a Hilbert space obtained as an $U$-ultralimit of normalized $\mu^{*n}- g \mu^{*n}$ can depend on the ultrafilter $U$ for some groups.
ISSN:0010-2571
1420-8946
DOI:10.4171/CMH/444