Finite-dimensional representations constructed from random walks
Given a 1-cocycle $b$ with coefficients in an orthogonal representation, we show that every finite dimensional summand of $b$ is cohomologically trivial if and only if $\| b(X_n) \|^2/n$ tends to a constant in probability, where $X_n$ is the trajectory of the random walk $(G,\mu)$. As a corollary, w...
Gespeichert in:
Veröffentlicht in: | Commentarii mathematici Helvetici 2018-01, Vol.93 (3), p.555-586 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a 1-cocycle $b$ with coefficients in an orthogonal representation, we show that every finite dimensional summand of $b$ is cohomologically trivial if and only if $\| b(X_n) \|^2/n$ tends to a constant in probability, where $X_n$ is the trajectory of the random walk $(G,\mu)$. As a corollary, we obtain sufficient conditions for $G$ to satisfy Shalom's property $H_{\mathrm{FD}}$. Another application is a convergence to a constant in probability of $\mu^{*n}(e) -\mu^{*n}(g)$, $n\gg m$, normalized by its average with respect to $\mu^{*m}$, for any finitely generated infinite amenable group without infinite virtually abelian quotients. Finally, we show that the harmonic equivariant mapping of $G$ to a Hilbert space obtained as an $U$-ultralimit of normalized $\mu^{*n}- g \mu^{*n}$ can depend on the ultrafilter $U$ for some groups. |
---|---|
ISSN: | 0010-2571 1420-8946 |
DOI: | 10.4171/CMH/444 |