Ergodic properties of equilibrium measures for smooth three dimensional flows

Let $\{T^t\}$ be a smooth flow with positive speed and positive topological entropy on a compact smooth three dimensional manifold, and let $\mu$ be an ergodic measure of maximal entropy. We show that either $\{T^t\}$ is Bernoulli, or $\{T^t\}$ is isomorphic to the product of a Bernoulli flow and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Commentarii mathematici Helvetici 2016-01, Vol.91 (1), p.65-106
Hauptverfasser: Ledrappier, François, Lima, Yuri, Sarig, Omri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\{T^t\}$ be a smooth flow with positive speed and positive topological entropy on a compact smooth three dimensional manifold, and let $\mu$ be an ergodic measure of maximal entropy. We show that either $\{T^t\}$ is Bernoulli, or $\{T^t\}$ is isomorphic to the product of a Bernoulli flow and a rotational flow. Applications are given to Reeb flows.
ISSN:0010-2571
1420-8946
DOI:10.4171/CMH/378