Ergodic properties of equilibrium measures for smooth three dimensional flows
Let $\{T^t\}$ be a smooth flow with positive speed and positive topological entropy on a compact smooth three dimensional manifold, and let $\mu$ be an ergodic measure of maximal entropy. We show that either $\{T^t\}$ is Bernoulli, or $\{T^t\}$ is isomorphic to the product of a Bernoulli flow and a...
Gespeichert in:
Veröffentlicht in: | Commentarii mathematici Helvetici 2016-01, Vol.91 (1), p.65-106 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $\{T^t\}$ be a smooth flow with positive speed and positive topological entropy on a compact smooth three dimensional manifold, and let $\mu$ be an ergodic measure of maximal entropy. We show that either $\{T^t\}$ is Bernoulli, or $\{T^t\}$ is isomorphic to the product of a Bernoulli flow and a rotational flow. Applications are given to Reeb flows. |
---|---|
ISSN: | 0010-2571 1420-8946 |
DOI: | 10.4171/CMH/378 |